■9群(電子材料・デバイス)-6編(受動・機能デバイス)

8章 非線形光学デバイス

【本章の構成】

本章では以下について解説する.

- 8-1 光非線形効果
- 8-2 非線形光学材料
- 8-3 導波路型非線形光学デバイス

■9 群-6 編-8 章

8-1 光非線形効果

■9 群-6 編-8 章

8-2 非線形光学材料

(執筆者:吉村政志,森 勇介)[2011年12月受領] 非対称中心の構造を有する光学結晶にレーザーを入射し,その2倍周波数の光を得る第2高 調波発生(SHG: Second-Harmonic Generation)はよく知られた非線形光学効果で,最初の実験 はレーザー誕生の翌年1961年に水晶を用いて行われている¹⁾.以来,レーザーとほぼ同じ歳月 にわたって新材料の開発が進められ,数多くの非線形光学結晶,波長変換デバイスが実現して いる.高密度光ディスクへの応用が可能な青,緑色を発生するSHG用非線形光学結晶として, 非線形光学定数の大きいKTiOPO4(KTP),LiNbO3(LN)などの強誘電体無機材料,ニトロア ニリンやカルコンの誘導体などをはじめ多数の有機材料が研究されてきた.80年代後半から ホウ酸系非線形光学結晶が登場し始め,近赤外の基本波レーザー光源とSHG,和周波発生

(SFG: Sum-Frequency Generation)用の無機結晶を複数組み合わせて、集光性・加工性に優れた短波長紫外光を得る研究が盛んになった.現在,得られる波長は真空紫外域まで短波長化が進んでいる.一方,90年代にInGaN系青色半導体レーザーが実現したことも影響し,有機結晶の波長変換は差周波発生(DFG: Difference-Frequency Generation)などを使った中赤外,テラヘルツ(THz)波などの長波長側へと研究対象が移っている.

非線形光学結晶でこれらの波長変換を行う場合,多くは結晶の持つ複屈折を利用した複屈折 位相整合(BPM:Birefringence Phase-Matching)が採用されている.位相整合角により結晶方位, 偏光方位が規定されることから,その入射条件での非線形光学定数(実効非線形光学定数 deft) が波長変換の重要なファクタとなる.周期的な分極反転領域が形成できる強誘電体結晶では, 擬似位相整合(QPM:Quasi-Phase Matching)が採用される場合がある.大きな非線形光学定数 の成分が利用できる長所があり,特に上述のLNはQPM素子として近紫外~中赤外・テラへ ルツ波帯までの幅広い波長域の波長変換に利用されている.本節では非線形光学結晶を短波長 側と長波長側で材料を大別し,最新の研究動向と併せて解説する.

8-2-1 短波長波長変換²⁾

近赤外の Nd: YAG レーザー(波長 1064 nm) などの SHG は,紫外光発生の前段の波長変換 として,また開発が遅れている緑色半導体レーザーに代わる光源として広く研究されている. 結晶としては BPM 方式の KTP や LiB₃O₅ (LBO), QPM 方式の LN などが用いられる.紫外光 の発生についても,Nd 系固体レーザーを基準にした3倍波(355 nm),4倍波(266 nm),5倍 波(213 nm)などが代表的な波長となっている.また,ArF エキシマレーザーと同一波長の193 nm の光源も波長変換方式で実現している.4倍波は基本波から SHG 過程を2回繰り返して得 られるが,その他の波長は SFG により発生させるのが一般的である.SFG は入射光の波長の 組合せによっては,SHG での最短波長よりも短い光を出すことができる.

紫外光を発生する材料には、吸収端波長が短く、複屈折と非線形光学定数が大きいことが求められるため、現在ではホウ素と酸素のネットワーク構造を基本骨格に持つホウ酸系材料が主流となっている.ホウ素と酸素の結合が強いため吸収端が短波長となりやすいことに加え、その基本構造(BO3, BO4など)が非対称であるため強い非線形性や複屈折を示す利点がある.

3 倍波素子には LBO, 4・5 倍波素子や 193 nm 光の発生にはβ-BaB₂O₄ (BBO), CsLiB₆O₁₀

(CLBO) などが用いられている.フッ素を含む KBe₂BO₃F₂(KBBF) 系結晶は,6 倍波(177 nm),最近では7倍波(153 nm)の発生が報告されているが,結晶材料としてはまだ研究開発の段階にある.

一方,リン酸化合物の KH₂PO₄ (KDP) はホウ酸系結晶に比べて非線形光学定数が小さいが, 結晶の大型化が可能なことから,レーザー核融合用の 2・3 倍波素子(40 cm×40 cm 断面)と して研究が続けられている.

BPM 方式の主な非線形光学結晶に関して、SHG(主にタイプ 1)波長とそのときの d_{eff} 値との関係を図 2・1 にまとめた。紙面の都合上、結晶名は略称を使用した。計算には AS-Photonics 社の Dr. Arlee Smith が開発した SNLO ソフトを用い、結晶温度は 300 K とした³⁾. d_{eff} 値は 1 pm/V 以下のものが多く、最短波長は YAG-4HG の 266 nm を前後するものが半数ほどあるのが 分かる。紫外光発生用結晶の材料開発では、大きな d_{eff} 値で 266 nm 光発生が実現できるかどう かが 1 つの指標になっている。実用に際しては、光学損失、レーザー損傷耐性や位相整合の許 容幅、機械的・化学的な安定性なども考慮され、必ずしも d_{eff} 値だけでは決まらないのが現状 である。 d_{eff} 値の小さい LBO が 532 nm 光の発生に広く用いられているのはその例である。

図2・1 BPM で用いられる主な非線形光学結晶の SHG 波長と deff 値の関係

8-2-2 長波長波長変換 4)

近年,非線形光学効果の光整流(Optical Rectification: OR) あるいは DFG の 2 つの方式を利 用した THz 波の発生が盛んに行われている.前者は超短パルスレーザーを結晶に入射し,入射 光の群速度と THz 波の位相速度が速度整合した場合,広帯域 THz 波を発生できるのが特徴で ある.後者は波長の近い 2 つの光を結晶に入射して狭帯域 THz 波を発生させる方法で,片方の レーザー波長をチューニングして広帯域スペクトルが得られる.何れの方式も,非線形光学定 数の大きく, THz 帯の吸収が少ない結晶が好ましい.

(1) 無機結晶

関亜鉛鉱型あるいはウルツ鉱型構造を持つII-VI族(ZnTeなど),III-V族(GaPなど)の化合 物半導体結晶、カルコパイライト型構造のZnGeP2,Defect-Chalcopyrite型のGaSeなどがTHz 波発生素子として研究されている.ZnTeは非線形光学定数が大きく,Ti:Sapphireレーザー光 とTHz波が速度整合することから,OR方式の発生が多くの機関で研究されている.GaPはYb 系レーザー光とTHz波が速度整合するため、同じくよく研究されている材料である.CdTeは GaPと同様に1µm光が速度整合し、非線形光学定数が大きいことから、Yb系レーザーの励起 に適した結晶である.これら各結晶の励起光波長に対する速度整合については、文献2)を参 考いただきたい.一方、イルメナイト型構造の酸化物結晶LNは、2002年に入射するパルスの 波束面を傾斜し、チェレンコフ放射のTHz波と速度整合させる新しいパルス面傾斜法が提案 された¹⁴⁾.2007年にはTi:Sapphirレーザーからパルスエネルギー10 uJ、パルス繰り返し周波 数10 HzのTHz波発生が報告されている.

DFG 方式の THz 波発生の研究は、バルク半導体結晶 GaP, GaSe, 酸化物結晶 LN を用いた ものが多い. LN は THz 帯で大きな吸収係数を持つため、DFG を出射面付近で行う面放射方式 が採用されている. バルク結晶のノンコリニア位相整合によって 0.7~2.4 THz の発生が報告さ れていたが、後にチェレンコフ放射を用いた THz 波光源が開発され、現在は 0.1~7.2 THz まで THz 波が飛躍的に広帯域化している.一方、化合物半導体の QPM-DFG 素子を用いた研究も盛 んになっている. ウエハ接合技術で作製した GaP や、エピタキシャル技術によって作製した GaAs の素子から THz 波の発生などが報告されている.

(2) 有機結晶

π 共役系有機結晶は大きな非線形感受率を有し、THz 波発生素子として優れた特性を示す材料が多い. 4-N,N-dimethylamino-4-N-methyl-4-stilbazolium tosylate (DAST) は巨大な超分子分極率のスチルバゾリウムカチオンを有し、OR 方式と DFG 方式で THz 波の発生に成功して以来、世界中で研究され、製品化もしている代表的な有機結晶である.非線形光学定数が大きく、As-Grown の平板面 (011) 面への垂直入射に対し、1.5 μ m 帯の光が THz 波と速度整合、位相整合を満足する.最近の研究では、超広帯域の 1.5~37 THz を高速可変できる DFG 方式の THz 光源が開発されている.中性分子の有機結晶として、2-methyl-4-nitroaniline (MNA) の置換体 N-benzyl-MNA (BNA) などや、OH1 などから THz 波の発生が報告されている. BNA は非線形光 学定数が大きく、OR、DFG 方式で 0.1~20 THz を発生している. GH1 は 1970 年に報告されていた有機分子であるが、最近になって THz 波発生特性が優れていることが明らかになった.非線形光学定数が大きく、入射光 1.2~1.46 μ m に対して速度整合条件下で OR 方式による THz 波発生 (0.3~2.5 THz, 1.3 THz がピーク周波数) が確認されている.

■参考文献

- P.A. Franken, A.E. Hill, C.W. Peters, and G. Weinreich : "Generation of optical harmonics," Phys. Rev. Lett., vol.7, no.4, pp.118-119, Aug. 1961.
- 森 勇介,吉村政志: "非線形光学結晶育成技術の現状と動向,"レーザー研究, vol.38, no.2, pp.84-88, Feb. 2010.
- 3) http://www.as-photonics.com/SNLO/
- 4) 吉村政志: "非線形光学結晶," テラヘルツ波新産業, 第3章6節, pp.51-56, CMC 出版, 2011.

■9 群-6 編-8 章

8-3 導波路型非線形光学デバイス

(執筆者:栖原敏明) [2011年10月受領]

非線形光学(NLO)効果は光強度密度に依存する現象であるので、非線形光学材料内に光導 波路を形成して光波を閉じ込め伝搬させることにより非線形相互作用を強めることができる. また、導波路特性を活用すれば種々の位相整合法を利用でき、高効率、高機能、小型安定で実 用的な種々の非線形光学デバイスを実現できる.2 次 NLO デバイスは異なる波長の光波間の 位相整合を必要とするが、導波型では結晶角度調整による整合は適用できない、チェレンコフ 放射型、複屈折温調型、モード分散型の位相整合などが検討されたが、現在では代表的な強誘 電体 NLO 結晶を用いたデバイスに対しては、多くの利点がある周期構造による疑似位相整合 (Quasi-Phase Matching: OPM)が主流となっている.本節では導波路型疑似位相整合非線形光

(Quasi-Phase Matching: QPM) か主流となっている。本即では導波路空延切位相整音非称形式 学デバイスについて概説する。

8-3-1 導波路型疑似位相整合非線形光学デバイスの基本機能と特徴¹⁾

図 3・1 に導波型 QPM-NLO デバイスの基本構造を示す.第2高調波発生(SHG),和周波発 生(SFG),差周波発生(DFG),パラメトリック光増幅/発振(OPA/OPO)などの2次 NLO 作 用を高効率に行うデバイスを実現するには、位相整合をとる必要がある.疑似位相整合 QPM は伝搬軸に沿って NLO 係数の符号を周期Aで反転した構造を設け、NLO 分極の波動ベクトル と発生しようとする波の波動ベクトルβの違いを周期構造の波数ベクトル K([K]=K=2π/A)で 補償することで位相整合をとる.相互作用は非線形モード結合方程式で解析できる.QPMで は周期さえ適切に選べば結晶の透明域内の任意の波長組合せに対して整合できるので、単一材 料で広い波長範囲のデバイスを実現でき、NLO テンソル最大成分を利用できるので高効率化 に有利で、導波路に光波を閉じ込めてパワー密度を高めることにより著しい高効率化と小型化 が図れる.

図3・1 疑似位相整合非線形光学デバイスの基本形

周波数 ω の基本波を 2ω の高調波に変換する SHG では、QPM 条件下で出力パワー $P^{2\omega}$ は入 力基本波パワー P_0 増大と素子長 L 増大に対して単調増大し、低出力領域では近似的に $P_0^2L^2$ と 結合係数の自乗 κ^2 の積で $P^{2\omega} = P_0^2 \kappa_{SHG}^2L^2$ と表される.周波数 ω_1 の信号波と ω_2 の強い励起波を 入力して $\omega_3 = \omega_1 + \omega_2$ の波に変換する SFG では、QPM 条件下で、出力パワー P^{ω_3} は L が小さな 範囲では入力波パワーの積 P^{ω_0} P^{ω_0} $E \kappa_{SFG}^2L^2$ に近似的に比例して増大する.しかし、SFG に 伴って ω_1 の波は減衰し, κL または $P^{\omega_1} P^{\omega_2}$ が大きいときは伝播途中で SFG から DFG に転じ, 入力と位相反転した ω_1 の波が生じる.周波数 ω_1 の信号波と ω_3 の強い励起波を入力して $\omega_2 = \omega_3$ $-\omega_1$ の波に変換する OPA/DFG では,同法則に従って差周波 (アイドラ波)が発生 (DFG) す るとともに信号波が増幅 (OPA) される. QPM 条件での変換効率は近似的に L^2 と入力光パワ ーに比例し,波長帯域はLに反比例する.

8-3-2 導波路形成技術と疑似位相整合構造形成技術^{1),2)}

光波長変換のため開発された多数の NLO 結晶のうち, 導波型デバイスへの応用がなされて いる材料は導波路形成技術が開発されている LiNbO₃、LiTaO₃、KTiOPO₄、KNbO₃など少数の強 誘電体結晶に限られている. 代表的な LiNbO₃と LiTaO₃では短波長励起光による光損傷を回避 するため Mg や Zn をドープした結晶が用いられ,一致組成結晶に加えて,反転抗電界が低い 利点を持つ定比組成結晶も開発され市販されるようになり,各種のドープ/組成の LiNbO₃, LiTaO₃が利用されている. これらの NLO 結晶に導波路を形成する標準的技術として Ti 拡散法 やプロトン交換法が用いられている. 最近は強閉じ込めや常光/異常光導波を可能にし,光損傷 耐性を高めるため,埋込み導波路,結晶直接接合導波路,リッジ導波路,細線導波路などの新 しい導波路形成技術の開発がなされている.

強誘電体 NLO 結晶では QPM 構造は自発分極の周期的反転で実現できる.周期分極反転構 造形成は QPM-NLO デバイス作製のキー技術である.多くの研究がなされた後,周期電極を用 いたパルス電圧印加法の有利性が示され,分極反転特性の理解も進み,先ず一致組成の LiNbO3 や LiTaO3 において各種金属膜電極や液体電極などの周期電極を用いた分極反転構造形成技術 が確立された.短波長光発生デバイス用の短周期(2.0~7.0 µm)の QPM 構造作製では,金属 薄膜の梯子型電極や波板状電極を用いることで良好な結果が得られる.光通信波長用デバイス では周期は 10 µm 以上と長いので,簡便な液体電極の利用で良好な結果が得られる.図3・2(a) に作製装置の例を示す.z-cut LiNbO3 基板(厚さ 0.5 mm)の+z 面にレジストグレーティング を設け,濾紙含浸 LiCl 水溶液を電極として電圧パルス(~反転抗電界 21 kV/mm× 結晶厚さ 0.5 mm = 10.5 kV)を印加する.必要電荷量(=自発分極電荷密度 70 µC/cm²×2×反転面積)を与 えたとき印加を停止するようにパルス幅を自動制御する.図3・2(b)に分極反転構造の例を示す. 分極反転特性は結晶のドーピングや組成により著しく異なるため継続して研究の対象になっ てきた.MgO:LiNbO3に対しては加熱電圧印加法³)やUV光照射電圧印加法⁴が開発されてい る.

 ⁽a) 電圧印加装置
 (b) 分極反転構造(エッチング後)の SEM 写真
 図3・2 電圧パルス印加法による周期的分極反転疑似位相整合構造形成

分極反転 QPM 導波路を用いて、2 次高調波発生、和・差周波数発生、パラメトリック発振/ 増幅など殆んどすべての2 次 NLO デバイスが開発されてきた.励起光源として半導体レーザ ー、半導体レーザー励起固体レーザーやファイバレーザーを含めて多様な種類のレーザーが利 用されている.レーザー共振器内に QPM 結晶を配置する共振器内波長変換方式も用いられる. 高効率が得られるチャネル導波路だけでなく高出力化に有利なプレーナ導波路を用いたデバ イスも開発されている.

8-3-3 導波路型疑似位相整合非線形光学デバイスの応用^{1),2)}

導波型 NLO デバイス研究は当初、高密度光メモリ用小型短波長光源実現を目的として推進 された. この目的で確立された青色 SHG レーザーの技術は、レーザーディスプレイ ⁹ に必要 な小型緑色 SHG レーザーに活用されて高性能化が続いている. 10W 以上の出力のデバイスも 実現されレーザーテレビへの応用も実証された. NLO 結晶の進化に伴って出力光波長域は紫 外域や中赤外域、テラヘルツ域にも拡大している.これらの波長変換レーザーは、各種のセン シング,計測,加工,パターン形成のための光源として,多くの応用がある.光通信分野では, 波長多重(WDM)フォトニックネットワークにおいて信号衝突回避とルーティング効率化に 要求される波長変換デバイスの有力方式として, 導波型 QPM-DFG デバイスが精力的に研究さ れ^の、多チャンネルー括波長変換デバイスや利得を持つ波長変換デバイスも実現されている. ファイバ分散補償への応用もある. QPM 導波路を用いた光サンプリングデバイスや光ゲート スイッチなど超高速信号処理デバイスも実証されている.将来技術として研究が活発化してい る量子情報通信(QIT)分野では、単一光子レベルの光子操作や量子状態変換の機能を果たす デバイスが要求されるが、これらの機能の多くは非線形光学で実現できる、単一光子検出用光 子波長変換や、スクイズド光、単一光子、相関光子対、量子エンタングル光子対などを発生す る導波型 OPM-NLO デバイスが考案・作製され、量子光学基礎実験や OIT 開発研究に利用され ているり

■参考文献

- 1) T. Suhara and M. Fujimura : "Waveguide Nonlinear-Optic Devices," Springer, Berlin, 2003.
- 2) 宮澤信太郎, 栗村 直(監修): "分極反転デバイスの基礎と応用,"オプトロニクス社, 2005.
- N. Horikawa, T. Tsubouchi, M. Fujimura, and T. Suhara : "Formation of domain-inverted grating in MgO:LiNbO3 by voltage application with insulation layer cladding," Jpn. J. Appl. Phys., vol.46, no.8A, pp.5178-5180, 2007.
- M. Fujimura, E. Kitado, T. Inoue, and T. Suhara: "MgO:LiNbO3 waveguide quasi-phase-matched second-harmonic generation devices fabricated by 2-step voltage application under UV light," IEEE Photon. Tech., Lett., vol.23, no.18, pp.1313-1315, 2011.
- 5) 黒田和男、山本和久、栗村 直(編): "レーザーディスプレイ、"オプトロニクス社, 2010.
- ・「擬似位相整合導波路を用いた非線形光学波長変換・信号処理デバイス,"応用物理, vol.72, no.11, pp.1381-1386, 2003.
- T.Suhara : "Generation of quantum-entangled twin photons by waveguide nonlinear optic devices," Laser & Photon. Rev., vol.3, pp.370-393, 2009.