■10 群(集積回路)-8編(集積化センサとマイクロマシン)

5章 MEMS 共振器

【本章の構成】

本章では以下について解説する.

- 5-1 はじめに
- 5-2 静電型共振器の一般表現
- 5-3 振動モード
- 5-4 BVD (Butterworth-Van Dyke) モデル
- 5-5 共振周波数
- 5-6 狭ギャップ効果
- 5-7 80 MHz ねじり振動 MEMS 共振器
- 5-8 検出回路
- 5-9*Q*値
- 5-10 まとめ
- 補遺 5-A 基準振動モードを利用した振動解析 (ラグランジュ方程式からの導出)
- 補遺 5-B BVD 等価電気回路の周波数依存性
- 5 章演習問題

5-1 はじめに

(執筆者:鈴木健一郎) [2018年9月受領]

今日, エレクトロニクスのタイミング及びフィルタ回路には水晶やセラミックスの機械式共振器が使用されている.これは,機械式共振器は電気式に比べて非常に大きな Q 値を持っているために高精度な周波数分解能を必要とする応用に適しているからである.現在,水晶振動子発振器の振動板厚さは 0.2 mm まで薄膜化されている.また,圧電フィルタの SAW (Surface Acoustic Wave) デバイスは 0.1 μm まで縮小された櫛歯ギャップ間隔が使用されている.これ らの縮小化はいずれもシステムの高周波化に対応しようとするためになされたものであるが,製造面の困難さから従来の機械式共振器の高周波化の限界 (< 200 MHz) が指摘されるように なってきた.また,これら機械式共振器は今日のエレクトロニクスの主役であるシリコン基板 と集積化することが困難であることから,システム小型化の大きな障壁になるという課題もあった.

近年,これら課題を解決することを目的にシリコン共振器の研究が欧米を中心に活発に進んでいる. MEMS 共振器は 1967 年に最初に発表されてから¹⁾,今までに発振器や MF, HF, VHF, UHF 帯で使用する種々のフィルタの発表がなされている.また,高周波発振器を目指して 1 GHz よりも大きな共振周波数を持つ共振器の発表もなされている.現在,共振周波数,*Q* 値, 安定性のすべてを向上するための研究が進行している.

本章では、機械-電気系を統合する見地に立って機械系の電気等価回路の導出を行い、その 後その等価回路の周波数依存性を述べる.この電気等価回路を使用すると機械系に並列に接続 されるキャパシタが周波数依存性に大きな影響を与えることが示される.最後に並列キャパシ タを抑制するための電気回路を示す.

5-2 静電型共振器の一般表現

(執筆者:鈴木健一郎) [2018年9月受領]

MEMS 共振器は、図 2・1 に示すように電気信号入力を機械構造体の動作を介して再び電気信号出力に変換する.途中の機械構造体の動作特性が電気回路のそれよりも優れている場合にこのような構成が使用される.例えば、水晶発振器では機械振動の Q 値が電気回路のそれよりも著しく大きいことを利用して水晶発振器を高精度のクロック発生デバイスとして使用している.共振器には、①低損失(Q 値が大きい)、②大きな入力-出力関係の直線性、③周波数安定性、更に、④周波数調整、などの機能が要求される.

図2・1 電気機械変換を持つ共振器の模式図

図 2・2 は静電駆動型の共振器を模式的に示したものである.入力電圧 v(t) を印加するとき, 静電気力によって機械構造体の振動が誘起される.一方,機械構造体と検出電極との間の静電 容量が変化するために,検出回路に出力電流 i(t) が流れる.このとき,i(t)の周波数は v(t) と 等しい.発振器では,出力の i(t) を電圧に変化して入力側に帰還する.このとき,機械構造体 の共振周波数に等しい周波数で i(t) が振動することになる.

図2・2 静電型共振器の模式図

この共振器では入力と出力との間に

$$\frac{i(t)}{v(t)} = \frac{f(t)}{v(t)}\frac{i(t)}{f(t)} = \eta_{e,\text{in}}V_{\text{DC},d} \cdot \eta_{e,\text{out}}V_{\text{DC},s}$$
(2 · 1)

の関係がある. f(t)は v(t)により機械構造体に働く静電気力であり、バイアス電圧 $V_{DC,d}$ にほぼ比例する. f(t)/v(t)の比例定数 $\eta_{e,in}$ を入力電気機械結合係数(Input Electromechanical Coupling Coefficient) あるいは電気機械変換効率(Electromechanical Transduction Efficiency)と呼ぶ. f(t)により発生する出力電流i(t)はバイアス電圧 $V_{DC,s}$ に比例しており、i(t)/f(t)の比例定数 $\eta_{e,out}$ を出

力電気機械結合係数(Output Electromechanical Coupling Coefficient)と呼ぶ.共振器の出力を大きくするには2つの結合係数を大きくする必要があり,共振器設計の要点の一つである.

5-3 振動モード

(執筆者:鈴木健一郎) [2018年9月受領]

梁の曲げ変形において曲げによる変形だけを考えて、せん断による変形及び回転慣性の影響 を無視したモデルをオイラー・ベルヌーイ梁(Euler-Bernoulli Beam)モデルと呼ぶ.このモデ ルを利用した梁の振動を以下に述べる.

梁が均質で一様な断面を持つ場合には, x 軸方向に延びる(抵抗を無視した)梁の運動方程 式は以下の式で与えられる.

$$\rho A \frac{\partial^2 y(x,t)}{\partial t^2} + EI \frac{\partial^4 y(x,t)}{\partial x^4} = q(x,t)$$
(3.1)

ここで、yはy軸方向の梁の変位であり、q(x,t)は単位長さ当たりの強制力である.また、A及びIは梁の断面積及び断面 2 次モーメント、 ρ 及びEは密度及び縦弾性係数である.

次に,均質一様な長さ1の梁の強制振動を考える.式(3·1)を解くのに以下の性質を持つn次の基準モード関数を用いる².

$$\frac{d^4Y_n(x)}{dx^4} = \frac{\rho A}{EI} \omega_n^2 Y_n(x),$$
(3 · 2a)

$$\int_0^l Y_m(x)Y_n(x)dx = 0 \quad (m \neq n)$$

このように、基準モード関数 Y_n(x)は、ある固有値に対する固有関数であり、異なる固有値に 対して互いに直交する性質を持っている.式(3·2a)を与えられた境界条件に対して解くことに よって Y_n(x)の関数形を求めることができる(振動工学の教科書に掲載されている).この基準 モード関数を利用すると、オイラー・ベルヌーイ方程式は以下のように変数分離することがで きる.

$$y(x,t) = \sum_{n=1}^{\infty} H_n(t) Y_n(x)$$
(3 · 2b)

これを式(3·1)に代入して基準振動モード Y_m(x)をかけて x を 0 から l まで積分すると,基準モード関数の直交性(式(3·2a))から以下の式が得られる.

$$M_{m}\frac{d^{2}H_{m}(t)}{dt^{2}} + M_{m}\omega_{m}^{2}H_{m}(t) = Q_{m}(t)$$
(3 · 3)

ここで、Qm及び Mmは一般化力及び一般化質量であり、以下の式で与えられる.

$$Q_m(t) = \int_0^t q(x,t) Y_m(x) dx, \qquad M_m = \rho A \int_0^t Y_m^2(x) dx, \qquad (3 \cdot 4)$$

式(3·3)は(減衰を持たない強制力荷重の)振動基本方程式である.基準振動モードを利用するとその振幅 H_m(t)が式(3·3)から求められる.H_m(t)が満たす微分方程式は質量-ばね系の運動方程式の式(3·A·1)の質量,ばね,力を式(3·4)によって一般化した式になることに留意された

い. このことから,梁の変位 y(x, t)を基準モード関数を用いて表した式($3\cdot 2b$)は振動の形(振動モード)を $Y_n(x)$ で表し、その振幅の時間変位を $H_n(t)$ で表したものであることが分かる.また, $M_m \omega_m^2$ は、振動モードが $Y_m(x)$ のときの機械構造体のばね定数である. ω_m は基準振動モードの固有角振動数であり、x及び t に依存せず梁の形状とその境界条件によって決まる値を持つ.例えば、梁が両端単純支持の境界条件を持つ場合には固有角振動数は以下のようになる.

$$\omega_m = \frac{m^2 \pi^2}{l^2} \sqrt{\frac{EI}{\rho A}}$$
 (両端単純支持の梁) (3・5)

以上より、式(3・1)の一般解は、以下のように与えられる.

$$\mathbf{y}(x,t) = \sum_{m=1}^{\infty} Y_m(x) \left[\frac{1}{M_m \omega_m} \int_0^t Q_m(\tau) \sin \omega_m(t-\tau) d\tau \right]$$
(3 · 6)

 $Q_m(t) = F_m \cos \Omega_m t$ とするとき,式(3・6)の $\cos \omega_m t$ に比例する項は梁の自由振動を表しており,減衰力を追加考慮したとき時間が経過するに従って減少する.一方, $\cos \Omega_m t$ に比例した項が外部より印加された力に応答した変位(強制振動)を表す.

一般の機械構造体の振動を与えられた強制力と境界条件で解くのに、振動による変位を基準 振動モードの重ね合わせとして計算するモード解析 (Modal Analysis)の方法がコンピュータシ ミュレーションでよく使用される.この方法では、最初に、機械構造体の形状、材料定数、及 び境界条件を与えて基準振動モードを計算し、次に、(基準振動モードの組と)強制力を与えて 構造体の応答を計算するという手順で計算がなされる.MEMS デバイスにおいては、計算で得 られた値と測定値がよく一致しており、コンピュータシミュレーションが非常に有効な方法で あることが知られている.

5-4 BVD (Butterworth-Van Dyke) モデル

(執筆者:鈴木健一郎) [2018年9月 受領]

共振器は電気信号の入出力に機械振動が介在する電気機械融合システムである.機械構造体の振動を電気信号に変換するには、共振器の機械振動特性を等価回路モデルとして表現すると 便利である.以下にその導出方法を示す.

5-4-1 機械システムの電気等価回路モデル

図 4・1 は静電気力で駆動する機械構造体の模式図である.機械構造体の変位を静的なものと 動的なものに分けて, x₀+x(*t*)で表すと,可動電極の運動方程式は

$$m\ddot{x} + b\dot{x} + k(x_0 + x(t)) = F_m = F_{m0} + \tilde{F}_m e^{j\omega t} = \frac{S\varepsilon_0}{2} \frac{(E_0 + \tilde{E}e^{j\omega t})^2}{\left\{d_0 - (x_0 + x(t))\right\}^2}$$
(4 · 1)

となる. ここで右辺はバイアス電圧 E_0 と交流電圧 $Re{Ee^{j\omega t}} = E\cos(\omega t + \phi)$ で発生する静電 気力を示しており、式中の上付き添え字の波線はフェーザ表示の値を示している(すなわち、 位相を含んだ複素数である). この静電気力を静的成分と動的成分に分けて表示すると以下の ようになる.

$$F_{m0} \approx \frac{\varepsilon_0 S}{2} \frac{E_0^2}{d_0^2} (1 + \frac{2}{d_0} x_0) = \frac{1}{2} \frac{C_0 E_0^2}{d_0} + s_n x_0$$
(4 · 2a)

$$\widetilde{F}_m \approx -\frac{\varepsilon_0 SE_0}{d_0^2} (1 + \frac{2x_0}{d_0}) \widetilde{E} + \frac{\varepsilon_0 SE_0^2}{d_0^3} x \approx \frac{\varepsilon_0 SE_0}{d_0^2} \widetilde{E} + \frac{\varepsilon_0 SE_0^2}{d_0^3} x = \eta_e \widetilde{E} + s_n x$$
(4 · 2b)

ここで、以下の電気機械変換効率と負スティフネスを導入した.

$$\eta_e = \frac{\varepsilon_0 S E_0}{d_0^2} = \frac{C_0 E_0}{d_0} \quad [N/V]$$
(4 · 2c)

$$s_n = \frac{\varepsilon_0 S E_0^2}{d_0^3} = C_0 \left(\frac{E_0}{d_0}\right)^2 \quad [N/m]$$
(4 · 2d)

これより、式(4・1)の動的成分は速度を用いて以下のように表される.

$$m\ddot{x} + 2\zeta m\omega_n \dot{x} + m\omega_n^2 \int \dot{x}dt = \eta_{a}\tilde{E}$$

$$(4 \cdot 3)$$

ここで、以下の置き換えを行った.

$$b = 2\varsigma m \omega_n, \qquad \omega_n = \sqrt{\frac{k - s_n}{m}} \tag{4.4}$$

式(4·3)の係数を以下に示す回路パラメータに置き換えることにより,図 4·2(a)に示す等価回路表現を得ることができる.

$$l_e = m, \quad r_e = 2\varsigma m\omega_n, \qquad c_e = \frac{1}{m\omega_n^2} = \frac{1}{k - s_n} \tag{4.5}$$

この等価回路の動インピーダンス (Motional Impedance) は

$$Z'_{m} = r_{e} + j\omega l_{e} - j\frac{1}{\omega c_{e}} = 2\varsigma m\omega_{n} + j\left\{\omega m - \frac{(k-s_{n})}{\omega}\right\} = Z_{m} - \frac{s_{n}}{j\omega}$$
(4 · 6a)

と求められる.ここで、Zmは機械インピーダンスと呼ばれるものであり、負スティフネスがない場合に図4·2(a)に示された3つの回路要素を直列に並べた等価回路のインピーダンスに相当する.結局、この動インピーダンスを用いると式(4·3)は

$$Z'_m \dot{x} = \eta_e \tilde{E} \tag{4.6b}$$

のように表される.式(4・6b)は可動電極の速度を交流電圧と関連付けるものであり,静電駆動 アクチュエータの基本式である.以上より,静電気力で駆動される機械構造体は,①バイアス 電圧によって負スティフネス分だけばね定数が減少する(式(4・5))ため,バイアス電圧が増加 すると共振周波数が減少する,②交流電圧に電気機械変換効率を掛けた力に速度が比例する, ことが分かる.

5-4-2 電気システムのモデル化

式(4・6b)は可動機械の速度を印加電圧と関連付けるものであった.次に、図4・1の電気シス テムに流れる電流と印加電圧との関係を求めてみよう.図4・1の可動電極と固定電極はキャパ シタを形成する.このキャパシタにはDCとACの2つの成分を持つ電圧が印加されている. キャパシタのギャップが変位するとき、静電容量変化に応じてDC電圧に比例した電流が流れ る.この可変キャパシタに流れる電流は以下のようにして導出できる.いま、DCとACの2つ の成分を持つ電圧が印加されるとき、キャパシタの電極に蓄積される電荷は $Q(t) = C(t)(E_0 + \tilde{E}e^{j\omega t})$ である.したがって、この可変キャパシタを流れる電流は

$$\tilde{I} = \dot{Q} = \dot{C} \left(E_0 + \tilde{E} e^{j\omega t} \right) + C \frac{d}{dx} \left(\tilde{E} e^{j\omega t} \right) \approx \frac{C_0}{d_0} \dot{x} E_0 + j\omega C_0 \tilde{E} = \eta_e \tilde{v} + j\omega C_0 \tilde{E}$$
(4 · 7)

となる. ここで、 $\hat{v} = \dot{x}$ とした. 式(4·7)の η_e は式(2·1)の $\eta_{e,out}$ であるが、図 4·1 の構造では式(4·2c)に示すように $\eta_{e,in} = \eta_{e,out}$ となる. この式より、 η_e の単位が A/(m/s) とも表せることに注意されたい. 式(4·7)右辺の第一項は静電容量が変化することにより発生する電流であり、第二項は静電容量 C_0 を流れる通常の電流である. 静電容量変化に起因する電流は、可変電極の速度と電気機械変換効率の積に等しい. 式(4·7)より、図 4·1 に示す電気回路に流れる電流を図 4·2(b)に示す 2 つの分岐を持つ等価電気回路で表現できることが分かる.

図4・3 静電気力で駆動する機械構造体の全電気等価回路

以上の式(4・6)と式(4・7)の関係を使うと、図 4・3(a)に示す電気等価回路を得ることができる. 次に、式(4・6b)の関係を使って図 4・3(a)の \hat{v} を除く(すなわち、図中のトランスを左の電気回路側に吸収する)と、図 4・3(a)は図 4・3(b)のように変形できる.最後に、図 4・3(b)の動インピーダンス Z_m 'を図 4・2(a)の回路要素を使って図示すると、結局、図 4・1 の静電駆動機械システムは、図 4・4 に示す等価電気回路によって表現される.なお、図 4・4 に示す各回路パラメータは機械要素パラメータと以下の関係がある.

$$L_{1} = \frac{m}{\eta_{e}^{2}}, \quad C_{1} = \frac{\eta_{e}^{2}}{(k - s_{n})}, \quad R_{1} = \frac{b}{\eta_{e}^{2}} = \frac{\sqrt{km}}{Q\eta_{e}^{2}} = \frac{k}{\omega Q\eta_{e}^{2}}$$
(4 • 8a)

$$\eta_e = E_0 \frac{\partial C_0}{\partial d} = \frac{\varepsilon_0 S E_0}{d_0^2} (1 + \frac{2\xi_0}{d_0}) \quad [N/V, \quad A/(m/s)]$$
(4 • 8b)

 L_1, C_1, R_1 はそれぞれ η_2^2 だけ重みづけがされていることに注意されたい.これは,静電気力が電 圧の η_e 倍(式(4·3))で,更に電流が速度の η_e 倍(式(4·7))となるからである.また, C_1 が負 スティフネスだけ大きくなることにも留意が必要である.負スティフネスは静電駆動型の大き な特徴である.図4·4を共振器のBVD(Butterworth-Van Dyke)モデルと呼び,機械-電気融合 システムの基本表現として広く利用されている.

図4・4 共振器の BVD (Butterworth-Van Dyke) モデル

5-4-3 MEMS 共振器の等価電気回路モデル

図 4・1 に示した電気機械システムでは電気信号の入出力は 1 か所 (1 ポート) であった. MEMS 共振器 (静電駆動-静電検出構成) では,駆動系と検出系の位置を別にした 2 ポート構 成もよく利用される.図 4・5 に示す共振器は,中央の可動電極を左右に振動させる駆動系と, (可動電極の上下振動を検出する)検出系とを配置した 2 ポート構成の共振器を示したもので ある.可動電極は、ラメ振動モードと呼ばれる同図の破線で示す振動モードで振動する.この 2 ポート構成の電気機械系の等価回路を図 4・6(a)に示す.同図において,左側のトランスを挟 む左右 2 つの回路が駆動系に,右側のトランスを挟む左右 2 つの回路が検出系にそれぞれ相当 する.図中のコイル巻き数比が左右のトランスにおいて逆になっていることに注意されたい. これは電気から機械に変換される効率が η_e であり、機械から電気に変換される場合には $1/\eta_e$ と なるからである.また、トランスの上に付けた丸印は対向する 2 つのコイルに流れる電流の向 きが互いに逆になることを強調するために描いたものである.同図に駆動系及び検出系のそれ ぞれの電気回路に流れる電流を模式的に示した. $C_{0,d} \ge C_{0,s}$ はそれぞれの電気回路の寄生容量 である.

図4・5 2ポート MEMS 共振器の構造

図 4・6(a)中央の機械系に描かれた矢印は機械の速度を表すものである(図 4・3 参照).この 矢印を電気回路に流れる電流を用いて等価回路を変換すると,図4・6(b)の等価回路が得られる. 同図に示した右側のコイルに発生する電流が機械振動によって検出系に生じた電流である.寄 生容量 C_{0.5}の影響により,最右翼に設置される検出回路(図示せず)に流れる電流値は機械振 動で誘起された電流値よりも小さくなる.このため,(検出系の感度をよくするために)寄生容 量を小さく抑えることが大切である.また,図4・6(b)は電流源 i_mを用いて図4・6(c)のように表 されることもある.これら図4・6(a)~(c)の図はいずれも左側の静電アクチュエータによって共 振器が駆動されて,右側のセンサを電流が通過することを表している.電流源 i_mの大きさは, これらの図ではアクチュエータとセンサとで等しいとしたが,実際はアクチュエータ及びセン サの電気機械変換効率の大きさの比だけ異なる.複雑な共振器回路構成では図4・6(c)に示す電 気等価回路の方が電流の流れを理解しやすいと思われる.

2 ポート共振器回路の検出系を流れる出力信号は、図 4・6(c)から機械系駆動回路を除いた図 4・6(d)によって示される.更に、この等価回路に示す電流 imの発生源を明示したのが図 4・6(e) の等価回路である.なお、この等価回路において検出系の電流 imの方向が駆動系のものと逆に なることを明確にするために、左端の電圧源の極性を図のように描いている.

図 4・6(e)の等価回路と図 4・4 の等価回路を比較すると、2 ポート回路では図 4・4 の C_0 が検出 系の静電容量 C_{0s} になることに注意すると、図 4・6 の等価回路は図 4・4 の等価回路と同じであ ることが分かる.すなわち、先に議論した共振周波数は、式中の C_0 を検出系の静電容量 C_{0s} と みなすことによってそのまま成立することになる.

検出系では交流電圧がゼロであることを考慮して式(4・7)を用いると、ギャップ d、対向面積 S(=長さ(L_{ov})×厚さ(t))を持つ検出系の2つの(平行平板)電極に流れる電流は、

$$i_m = \dot{C}E_0 \left(= \eta_e \dot{d}\right) = \left(\frac{\varepsilon_0 S}{d_0^2} E_0\right) \dot{d} = \omega Q \left(\frac{\varepsilon_0 S}{d_0^2} E_0\right)^2 \frac{\ddot{E}}{k} = \frac{\ddot{E}}{R_1}$$
(4 • 9)

である.この式の最後から二つ目の等号において下記の関係を使用した.

$$\dot{d} = \frac{\partial (\Delta d)}{\partial t} \Big|_{\text{resonant}} \approx \omega Q \, \frac{F_{ac}}{k} = \omega Q \left(\frac{\varepsilon_0 S}{k d_0^2} E_0 \tilde{E} \right) \tag{4 \cdot 10a}$$

$$k = aEt \left(\frac{w}{L}\right)^3 \tag{4.10b}$$

ここで, k は長さ L, 幅 w を持つ梁のばね定数であり, 梁は幅方向に振動する場合を考えた. また, a は固定条件によって決まる定数である. 式(4・9)最後の等号は, 式(4・8a)の右の式を使った. 式(4・9)より, 検出系の出力電流を増大させるには R₁を小さくしなければいけないこと が分かる.

図 4・4 に示す BVD モデルの $C_1-L_1-R_1$ の分岐が機械共振に相当するものである.図 4・7 はこの $C_1-L_1-R_1$ の分岐回路のインピーダンスを複素平面に模式的に描いたものである.直線 (B) はその R_1 が直線 (A) の R_1 よりも大きいときのインピーダンスの変化を示している.周波数が高くなるに従って分岐のインピーダンスは直線 (A) と (B) を下側から上側に移動する.原点からこれら直線上のある点までの距離がインピーダンスの大きさを示している.このため,直線 (A) 及び (B) が実軸 $Re\{z\}$ と交わった点に相当する角周波数 ω_s のときが最もインピーダンスが小さい.このときインピーダンスの大きさは R_1 である.共振器を発振器に応用する場合にはこのインピーダンスの大きさがある値よりも小さいときに発振が起こる(フィードバックされる共振器からの出力を大きくする必要があるため).発振器として利用できるインピーダンスを図 4・7 の直線 (A) 及び (B) に太線で模式的に示す.この図から,角周波数 ω_s 近くの位相角変化が R_1 が小さいほど大きくなることが分かる.位相年のジンは更に C_0 にも依存している.補遺 B に詳述するように、 C_0/C_1 の比の値を 100以下にすることが必要である.

((A) R₁が小さい場合, (B) R₁が大きい場合)

5-5 共振周波数

(執筆者:鈴木健一郎) [2018年9月受領]

図 4・4 に示した共振器回路全体のアドミッタンスは

$$Y(s) = sC_{0} + \frac{sC_{1}}{1 + s^{2}C_{1}L_{1} + sC_{1}R_{1}} = \frac{sC_{0}\left[s^{2} + \frac{R_{1}}{L_{1}}s + \left(1 + \frac{C_{1}}{C_{0}}\right)\omega_{s}^{2}\right]}{s^{2} + \frac{R_{1}}{L_{1}}s + \omega_{s}^{2}} = \frac{sC_{0}\left[s^{2} + \left(\frac{\omega_{s}}{Q_{U}}\right)s + \left(1 + \frac{C_{1}}{C_{0}}\right)\omega_{s}^{2}\right]}{s^{2} + \left(\frac{\omega_{s}}{Q_{U}}\right)s + \omega_{s}^{2}}$$

$$s = j\omega$$
(5 \cdot 1)

である.ここで以下の置き換えをした.

$$\omega_s = \frac{1}{\sqrt{L_1 C_1}} \qquad \qquad Q_U = \frac{\omega_s L_1}{R_1} \tag{5.2}$$

これらは、それぞれ機械の固有角振動数と Q 値である. Ouが十分大きいときには式(5·1)は以下のように簡略化される.

$$Y(s) = \frac{sC_0 \left[s^2 + \left(1 + \frac{C_1}{C_0} \right) \omega_s^2 \right]}{s^2 + \omega_s^2}$$
(5 · 3)

この式より,回路のアドミッタンスが最大になるのは式(5·2)に示すω。のときであり,最小に なるのは以下の角振動数であることが分かる.

$$\omega_p = \frac{1}{\sqrt{L_1 C_1}} \sqrt{1 + \frac{C_1}{C_0}}$$
(5 • 4)

共振角周波数 ω_s のときには、リアクタンスは $X_{L1} = -X_{C1}$ となるので、図 4・4 の回路は C_0 と R_1 の並列回路になる.水晶振動子では、 $|X_{C_0}| \gg R_1$ であることから、共振回路は実質的に抵抗 として働く.このため、 R_1 は等価直列抵抗 (ESR) と呼ばれる.周波数が $\omega_s < \omega < \omega_p$ のとき には回路のインピーダンスは,式(5・3)より+90度の位相を持つためにインダクティブである. 共振器の共振周波数 f. はリアクタンスがゼロ (式(5·3)のアドミッタンスが最大) となる周波 数であり, C。の存在のために f。よりも少し大きな値になる(f、> f。:補遺 B を参照). しかし, 両者の差は非常に小さいために、実用上、f_s≈frと考えてよい.図5·1 は機械振動特性とこれ に対する電気特性を模式的に示したものである. レーザドップラ振動計 (LDV) によって機械 構造体の振動を測定すると、 f. の周波数のところで振幅が最大となる. 一方, インピーダンス アナライザ(Zメータ)で共振器のインピーダンスを計測すると、f.の周波数でインピーダン スが最小(位相遅れ 90°)となり、f,の周波数でインピーダンスが最大となる.レーザドップ ラ振動計を利用した測定では Coの影響を除くことができるので,測定回路が簡略となるとい う利点がある.

共振器デバイスを使って発振器を作製するときには、共振器デバイスが共振周波数f,の近傍 で発振する(機械系等価回路はインダクティブである).このため,発振周波数はfsとfsの間 の周波数となる.水晶はこの差が小さいために正確な周波数で発振する.一方,圧電セラミッ クは、水晶に比べて両者の周波数の差 (f, - f,) が大きいために水晶に比べて周波数が正確でな いという欠点がある.しかし,圧電セラミックは,外部回路を使って周波数を大きく変動させ ることができるという利点を持つため、電圧制御発振器(VCO)として広く利用されている.

図 5・1 機械振動特性と電気振動特性の模式図 ((a) レーザドップラ振動系の測定, (b),(c) インピーダンスアナライザの測定)

5-6 狭ギャップ効果

(執筆者:鈴木健一郎) [2018年9月受領]

図 4・4 の C_1 , L_1 , R_1 の直列部分は機械構造体の振動による機能を表したものであり, Motional Arm と呼ばれる. この Motional Arm の電気インピーダンスは以下のように表される.

$$Z_{e} = \frac{1}{\eta_{e}^{2}} \left\{ r_{e} + j\omega \left(l_{e} - \frac{1}{\omega^{2} c_{e}} \right) \right\} = \frac{Z'_{m}}{\eta_{e}^{2}}$$
(6 • 1)

ここで、 Z'_{m} は式(4·6a)で表される動インピーダンスである.また、 η_{e} は電気機械変換効率であり、式(4·8a)に示すように可動-固定電極間の距離の2乗に反比例する.式(6·1)の虚数部がゼロの周波数 ($f_{s} \approx f_{r}$)のとき、機械構造体は共振して動インピーダンスが最も小さくなる.この周波数において図4·3の回路で $|X_{c_{0}}| \gg R_{1}$ ($X_{c_{0}}$ はリアクタンス)が成り立つとき、図4·3の回路を流れる電流は

$$\widetilde{I} = \frac{\widetilde{E}}{Z_e} = \frac{1}{R_1} \widetilde{E} = \frac{\eta_e^2}{r_e} \widetilde{E}$$
(6 • 2)

である. すなわち, 共振時の電流の大きさは電気機械変換効率の2乗に比例して増大する. こ れは, 出力電流が可動-固定電極の距離の4 乗に反比例することを示しており, 電極間距離を 狭くすると大きな電流を得ることができる(「狭ギャップ効果」と呼ばれる). 一般に MEMS 共 振器の信号は微弱であるため,この狭ギャップ効果を利用して SN 比を増大させている.なお, 上に述べたギャップに対する依存関係は電極間ギャップを変化させる方向に移動する平行平 板モデルに対して当てはまるものである. 電極に平行に移動する櫛歯電極モデルでは, 出力電 流はギャップの2乗に反比例する.

共振器の可動-固定電極間に小さな距離を作製するには、①微小なマスク寸法を利用してシ リコン基板をエッチングする方法(バルクマイクロマシニング)、②一方の電極を形成した後 に、この電極の側壁あるいは上/下面に犠牲膜とその犠牲層の上に他方の電極を順に作製した 後に犠牲膜を除去する方法(サーフェイスマイクロマシニング)、③微小な厚さを持つ BOX 酸 化膜をリリース時に除去する方法(SOI 基板バルクマイクロマシニング)、などの様々な手法が 知られている.これらはいずれもデバイス作製時に狭い間隔を形成するものであるが、最近、 デバイスを作製した後に固定電極を移動させて共振器の電極間距離を狭くするという移動電 極の方法を利用した狭ギャップ形成法が報告されている.

図 6・1 にその原理を示す.固定電極は、駆動電極で生じた静電気力によって振動電極(可動 電極)の側に移動させられ、振動電極に衝突する直前にストッパに衝突して停止する.移動前 の固定-可動電極間,及び固定-ストッパ間の距離をそれぞれ $g_0 \ge g_1 \ge t$ すると、このときの距 離 g_0 に比べて小さい.この狭ギャップ形成方法では、通常変位しない固定電極を変位の固定電 極の移動によって、最終的な固定-可動電極の距離は ($g_0 - g_1$) となる.この値は作製させて使 用することに留意されたい.

図 6・2 にシリコン基板から作製した 900 kHz MEMS 共振器を示す³. 試作したデバイスは, 移動前の電極間距離が 3.44 µm であったのに対して,移動後に 0.84 µm と約 1/4 に減少した. 図 6・3 は可動ビーム中央の振幅をレーザドップラ振動計で測定した振動振幅を示したもので ある.式(4・6b)と(4・8b)から電極移動によって 16.8 倍の振幅が増大することが期待されるが, 実際,振幅の測定値は 17.5 倍の増大を示した.図 6・4 はこのデバイスの電気特性をインピーダ ンスアナライザで測定したデータである.固定電極の移動により η_eが増大して,インピーダン スが大きく低減した結果,固定電極の移動前には共振信号がノイズに埋もれていたのに対して, 移動後には明確に観測できるようになったことが明確に示されている.

図6・2 移動電極を持つ 900 kHz ビーム型 MEMS 共振器

図6・3 移動前後の共振器振動振幅の測定値

図6・4 移動前後の共振器インピーダンスの測定値 (V_{AC} = 0.25 V_{ms}, V_{DC} = 3 V)

5-7 80 MHz ねじり振動 MEMS 共振器

(執筆者:鈴木健一郎)[2018年9月受領] 図 7・1 は SOI 基板を利用して作製した 0.1 µm の均一で平坦な狭ギャップを持つ 80 MHz シ リコン共振器である⁴⁾. この共振器は 4 つのねじりビームを利用してねじり振動を発生する. ねじり振動は, a) 共振周波数がビームの断面形状にあまり依存しない, b) 高次振動モードが 基本振動数の整数倍である, c) 歪エネルギーの集中による破壊が起こりにくい, という利点が ある. このシリコン共振器の作製方法を図 7・2 に示す. 0.1 µm の狭いギャップは SOI ウエハ の BOX 酸化膜を除去して形成した (同図(c)). シリコン基板をガラス基板に接合するときに, ギャップ下に設けた駆動電極への配線を同時に形成した (同図(d)).

図7・1 シリコン MEMS ねじり共振器 (80 MHz)

図7・2 シリコン MEMS ねじり共振器の作製方法

図7・3はこの共振器のインピーダンスの測定値である.共振及び反共振を見ることができる. 表7・1は、このデバイスから抽出した *C*₁, *L*₁, *R*₁と水晶の代表的な値を比較したものである.式 (5・2)と(5・4)より $f_s \geq f_p$ の差は C_l/C_0 の比に関連していることが分かる. シリコン MEMS 共振 器はこの周波数の差が水晶よりも小さいため, MEMS 発振器の発振周波数は非常に狭い周波数 幅に存在する. この結果, 共振周波数付近の位相変化は 180°に比較して小さな値となる (5章 補遺 B 参照). シリコン MEMS 共振器の R_1 は水晶よりも格段に大きいが, L_1 も大きいために 大きな Q 値が得られる. しかし, シリコン共振器の大きな R_1 は出力電流の減少を引き起こし, また, 共振器を RF 回路と接続するときにインピーダンスマッチングをとるための回路を搭載 しなければならないために, 発振回路が複雑になるという問題も発生する. 現在, シリコン MEMS 共振器の R_1 を低減させることが大きな課題であると考えられている.

図7・3 シリコン MEMS ねじり共振器のインピーダンスの測定値 (駆動条件:0.1 Vms, 5 Vpc)

	シリコン共振器 (80 MHz)	水晶共振器(8 MHz)
R_1 [Ω]	39 k	8.0
C_1 [fF]	0.0020 (1.0 GΩ)	27 (0.74 MΩ)
L_1 [H]	2.1 (1.1 GΩ)	$0.014~(0.70~{ m M\Omega})$
C ₀ [pF]	0.15 (13 kΩ)	5.57 (3.6 kΩ)
C_0 / C_1	7.5×10^{4}	2.1×10^{2}
Q-factor	2.6×10^{4}	8.9×10^{4}

表7・1 試作した MEMS 共振器と水晶の BVD モデルパラメータの比較

5-8 検出回路

(執筆者:鈴木健一郎) [2018年9月受領]

静電型 MEMS 共振器の出力電流は式(4・8) の R_1 が大きいために微弱であり,また,表7・1 に 見るように, $|X_{C_0}| \ll R_1$ である.このため、シリコン MEMS 共振器は、共振周波数のとき C_0 と R_1 の並列回路となる(水晶では R_1 だけと考えてもよかった).MEMS 共振器の微小な振動を検 出する(すなわち, R_1 を検出する)には C_0 の影響を低く抑えることが重要である(5章補遺 B 参照). C_0 の影響を抑える一つの方法は先に述べた狭ギャップ効果を利用して(R_1 を減少させ て)出力電流を増大させる方法である.しかし、狭ギャップを作製するには加工方法の限界が あることから、以下に述べるように電気回路により C_0 をキャンセルする方法が検討されてい る.

(a) 差動駆動

(b) 差動検出

(c) 差動駆動および差動検出

図 8・1(a)は1 ボート共振器の構成を示すものであり、動作する共振器の出力電流から動作し ない共振器の出力電流を差し引くという差動検出を利用する.互いに近くに作製された2つの 共振器の一方はリリースされて動作できるのに対して、もう一方の共振器はリリースされていないために機械的動作が生じない.このとき、両者の C₀ はほぼ同じ値をとると考えられることから、両者の出力電流を差し引くことによって共振器の機械動作によって発生する出力電流だけを取り出すことが可能である.共振器が共振するときには C₀ と R₁の並列回路から C₀の影響を除くことができ、R₁からの信号成分のみが出力される.図 8·1(a)ではこの差動電流を実現するために共振器の入力段に逆位相を持つ 2 つの電圧信号を生成する回路が置かれている

(Differential Drive).

図 8・1(b)は,機械振動の方向が互いに逆に動作(差動駆動)するように設定された2つの共振器を使用する構成である.このときには,C₀に起因する2つの共振器の電流方向(*i*₀)は同じ方向を向いているが,*i*_mの方向は互いに逆である.このため,(出力電流を電圧に変換した後に)両者の出力電圧の差動をとることによって,*i*₀を除いた*i*_mだけの信号を得ることができる

(Differential Sense).

図 8·1(c)は、機械振動方向が互いに逆に動作(差動駆動)する 2 つの共振器を利用して駆動 及び検出の両方を差動で行う構成である.各々の共振器には、機械振動によって式(4・8)に示 す電流 i_m が発生するが、機械の逆方向駆動と電気の逆入力電圧によって共振器の等価回路の右 側には式(4・6a)で示されるモーショナル電流($2 \times i_m$)だけが流れる(i_0 が除かれる).しかし、 検出側の寄生容量 C_p の影響を受けて出力電流の減少が起こる.図 8·1(c)は、この寄生容量 C_p の影響による電流 i_p を共に描いている(図 8·1(c)の電流 i_0).この電流 i_p は、2 つの共振器の出 力信号電圧の差をとることによって相殺することができる(差動検出).図 8·1(c)のような差動 駆動及び差動検出の構成を Differential Drive and Sense と呼んでいる.この Differential Drive and Sense 方式を一つの共振器で実現する方法がある.図 8・2 は、矩形構造体の各 4 辺に駆動及び 検出のための電極を配置する共振器の電気回路構成と機械振動モードとを示したものである. 共振器構造体は互いに 180°位相が異なる 2 つの入力電圧により駆動(差動駆動)されて、上 下と左右方向に延び縮みする(Extensional Vibration Mode).一方、延び縮みを行う振動によっ て生じる静電容量変化を互いに位相が 180°異なる位置で検出することにより、1 つの共振器 で差動検出を行うことができる.

図8・2 1つの共振器を使用した差動駆動及び差動検出の電極配置

5-9 Q值

(執筆者:鈴木健一郎)[2018年9月受領] *Q*値は、共振の鋭さを示すパラメータであり、以下のように定義される.

$$Q値 = 2\pi \frac{b36瞬間に系に蓄えられているエネルギー [J]}{-周期の間に系から散逸するエネルギー [J/cycle]}$$
$$= \omega_0 \frac{b36瞬間に系に蓄えられているエネルギー [J]}{単位時間当たりの系から散逸するエネルギー [J/cycle]} (9・1)$$

LCR 直列共振器の系を考えると、L に蓄えられる最大エネルギー Ll_{rms}^2 (このとき C の蓄積 エネルギーはゼロ)より $Q = \omega_0 L/R$,また、銅ようにして $Q = 1/(\omega_0 CR)$ の関係が得られる. また、共振角周波数 ω_0 の周りの±3 dB のバンド幅の角周波数を ω_1 、 ω_2 ($\omega_2 > \omega_1$)とすると、 $Q = \omega_0/(\omega_2 - \omega_1)$ である.このように Q 値は回路定数や測定データから容易に求めることが できる.一方、機械系の Q 値は、式(4・4)で導入した減衰係数 b と減衰比くの関係式と以下の ように関連付けられる.

$$b = 2m\zeta\omega_n = \frac{m\omega_n}{Q}, \quad \zeta = \frac{1}{2Q}, \quad \omega_n = \sqrt{\frac{k - s_n}{m}}$$
(9 · 2)

Q値の物理的意味を明らかにするにはQ値と共振周波数 f_0 の積を考えると分かりやすい.すなわち

$$f_0 \cdot Q = 2\pi \frac{- \exists 期 o \exists c x c a z b a z n v + - [J/cycle]}{- \exists \eta o \exists c x n b b b a z n v + - [J/cycle]}$$
(9・3)

である.式(9·3)の右辺は散逸エネルギーの機構に依存した定数をとる.MEMS 共振器のエネルギー損として可動構造体を支持するサスペンションによる損失(アンカー損)の寄与が大きい.アンカー損を抑制して $f_0 \cdot Q = 6.69 \times 10^{13}$ Hzを実現したシリコン共振器が報告されている^の.以下にアンカー損に関連するいくつかの研究成果を述べる.

図9・1 異なるアンカー形状によって支持される共振器

- A) 図 9・1(a)及び(b)は異なる形状を持つアンカーによって振動構造体を支持したビーム共振器を示す.測定の結果,テーパ形状を持つもの(同図(a))の方が直角形状のもの(同図(b))よりも 20~30%ほど大きな Q 値を持つことが分かった⁵⁾. これは,振動構造体の根元に発生する応力集中が大きくなるほど共振器のエネルギーが流出しやすくなるためと思われる.
- B) 図 9・2(a)は、途中にサスペンションを設けてこれを介して振動構造体をアンカーに固定 する構成を示すものである. 図 9・2(b)は共振器の Q 値が最も大きくなるときの振動モー

ドを示す. これをみると振動構造体がサスペンションの振動モードの節で支持されていることが分かる. このときのサスペンションの一つの腕の長さ(*L*arm)はλ/2 である. サスペンションの長さを節約するためにλ/4 の長さを持つサスペンション設計もしばしば利用される. ここでλは音波の波長を示している. 共振器の振動モードによって縦波と横波の異なる音波の波長を使用することに留意されたい.

図9・2 サスペンションを介して支持される共振器:(a)構造,(b)振動モード(シミュレーション)

C) 狭い幅を持つサスペンションを利用すると Q 値を大きく増大させることができる. これ は、アンカー損が生じる領域が小さくなるからである.

5-10 まとめ

(執筆者:鈴木健一郎) [2018年9月受領]

今日,電気処理回路の工夫によって小さな出力信号を増幅することに成功した MEMS 共振 器は,発振器としての商品化が進んでいる.一般に MEMS デバイスは集積回路とともに用い られるときにその潜在能力を大いに発揮できることから, MEMS 発振器は電気回路と機械構造 体の融合の良い実証となっている.現在, MEMS 共振器は小型化に適しているという特徴を活 かして,水晶振動子の市場を急速に置き換えている.

水晶発振器と比較していくつかの課題が残されている.まず,周波数安定性に関して,シリ コン MEMS 共振器の温度特性が大きいという課題がある(通常 -25 ppm/℃).これを抑制する ために,温度変動がシリコンのヤング率温度係数の半分に比例していることに着目して,シリ コン半導体材料の評価がなされた.この結果,高濃度 p 型シリコンのヤング率が温度によって ほとんど変化しないことが再認識された.

MEMS 共振器は実装方法によって大きな影響を受ける. 最適な実装は機密封止が可能で温度 変化などによって誘起される歪みが小さいものである. 低温金属接合や SiGe を利用したパッ ケージング技術が開発されている. 更に, エピタキシャル成長シリコンを利用した機密封止も 注目されている.

補遺 5-A 基準振動モードを利用した振動解析(ラグランジュ方程式からの導出)

(執筆者:鈴木健一郎)[2018年9月受領]

5-3 節では梁の運動方程式(3·1)に変数分離解式(3·2b)を代入して式(3·3)を導出し、これを 解いて梁の変位を示す式(3·6)を求めた.このような数学的な方法とは別に、物理的イメージ を得ることが容易なラグランジュ方程式からの導出を以下に述べる.この方法を用いると、式 (3·3)の一般化(等価)質量 M_m ,一般化(等価)ばね定数 $M_m o_m^2$ (= k_m),一般化(等価)力 Q_m をエネルギーを考えることによって容易に導出することができる.

長さ*l*と断面積*A*を持つ機械構造体の*n*次の振動を考える. $Y_n(x)$ を式(3・2a)と与えられた 境界条件の両方を満足する*n*次の基準振動モードとするとき、*n*次振動モードの変位は

$$y_n(x,t) = H_n(t)Y_n(x) \tag{5.A.1}$$

と表される. この振動の運動エネルギー及び弾性体の歪エネルギーは

$$T = \frac{1}{2}\rho A \int_0^l \dot{y}_n(x,t)^2 dx = \{\frac{1}{2}\rho A \int_0^l (Y_n(x))^2 dx\} \dot{H}_n(t)^2, \qquad (5 \cdot A \cdot 2a)\}$$

$$V_E = \frac{1}{2} EI \int_0^l (\frac{\partial^2}{\partial x^2} y_n(x,t))^2 dx = \{\frac{1}{2} EI \int_0^l \left(\frac{d^2}{dx^2} Y_n(x)\right)^2 dx\} H_n(t)^2, \qquad (5 \cdot A \cdot 2b)$$

で与えられる.ここで、上付きのドットは時間微分を示しており、 ρ 及びEは質量密度と歪みが生じる方向のヤング率である.また、Iは断面 2 次モーメントである.機械構造体に働く力 $e_q(x,t)$ とするとき、力のポテンシャル $V_F(x,t)$ は -q(x,t)が行う仕事であるから、

$$V_F(x,t) = -\int_0^l q(x,t) y_n(x) dx = -\left\{\int_0^l q(x,t) Y_n(x) dx\right\} H_n(t), \qquad (5 \cdot A \cdot 2c)$$

と与えられる.

このとき, ラグランジュアンは

$$L = T - (V_E + V_F) \tag{5.A.3}$$

となる. 最小作用の原理(現実の運動はラグランジュアンが停留値をとる条件で起こる)より, ラグランジュ方程式

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{H}_n(t)} \right) - \frac{\partial L}{\partial H_n(t)} = 0, \qquad (5 \cdot A \cdot 4)$$

が得られる.式(5・A・2)と式(5・A・3)を式(5・A・4)に代入して

$$M_n \frac{d^2 H_n(t)}{dt^2} + M_n \omega_n^2 H_n(t) = Q_n(t), \qquad (5 \cdot \mathbf{A} \cdot \mathbf{5a})$$

ただし,

$$M_{n} = \rho A \int_{0}^{l} (Y_{n}(x))^{2} dx, \ k_{n} = M_{n} \omega_{n}^{2} = EI \int_{0}^{l} \left(\frac{d^{2}}{dx^{2}}Y_{n}(x)\right)^{2} dx, \ Q_{n}(t) =$$
$$\int_{0}^{l} q(x,t)Y_{n}(x)dx = \left\{\int_{0}^{l} W(x)Y_{n}(x)dx\right\}K_{n}(t) = W_{n}(x)K_{n}(t)$$
(5 · A · 5b)

が得られる.ただし,

$$q(x,t) = W(x)K(t) = \sum_{n=1}^{\infty} W_n(x)K_n(t),$$
 (5 · A · 5c)

とした. n 次の固有角振動数は

$$\omega_n = \left[\frac{EI \int_0^l \left(\frac{d^2}{dx^2} Y_n(x) \right)^2 dx}{\rho A \int_0^l (Y_n(x))^2 dx} \right]^{1/2}, \tag{5.A.6}$$

である.式(5·A·5a)に減衰項を追加すると、振動の基本形

$$M_{n}\frac{d^{2}H_{n}(t)}{dt^{2}} + \frac{M_{n}\omega_{n}}{Q}\dot{H}_{n}(t) + M_{n}\omega_{n}^{2}H_{n}(t) = Q_{n}(t), \qquad (5\cdot A\cdot 7)$$

が得られる (3 章 3-2 節式(2·1a)を参照). ここでQはQ値である. $H_n(t)$ 及び $Q_n(t)$ を変位と 力の位相差 ϕ_n を使って以下の調和振動を

$$H_n(t) = A_n \cos(\omega_n t - \phi_n), \ Q_n(t) = F_n K_n(t) = F_n \cos(\omega_n t), \tag{5.A.8a}$$

と表す. ただし,

$$K_n(t) = \cos(\omega_n t) \tag{5.A.8b}$$

とした. 式(5·A·8)を式(5·A·7)に代入すると

$$A_n = Q \frac{F_n}{M_n \omega_n^2}, \quad F_n = \int_0^l W(x) Y_n(x) dx, \tag{5.A.9}$$

が得られる (3章 3-2節式(2·4a)を参照). 以上より, n次振動モードの変位

$$y_n(x,t) = H_n(t)Y_n(x) = Q \frac{F_n}{M_n \omega_n^2} Y_n(x) \cos(\omega_n t - \phi), \qquad (5 \cdot A \cdot 10)$$

を得ることができる.なお、ここでは自由振動による変位は除いた.

補遺 5-B BVD 等価電気回路の周波数依存性

(執筆者:鈴木健一郎) [2018年9月 受領]

共振周波数付近の BVD モデルの周波数依存性はインピーダンスの変化を見ることによって 知ることができる.図4・4の合成インピーダンスは

$$Z(j\omega) = R_{BVD} + jX_{BVD} = \frac{R_1 + j[x - \omega C_0(x^2 + R_1^2)]}{(1 - \omega C_0 x)^2 + (\omega C_0 R_1)^2},$$

$$x = \omega L_1 [1 - \left(\frac{\omega_s}{\omega}\right)^2],$$
(5·B·1)

である. ω_sは式(5·2)に示す周波数である. Z(jω)のリアクタンスは

$$\begin{split} X_{BVD} &= \frac{x - \omega C_0 (x^2 + R_1^{-2})}{(1 - \omega C_0 x)^2 + (\omega C_0 R_1)^2} = \frac{L_1 \omega_s \xi[\left(1 - \frac{1}{\xi^2}\right) - A[\xi^2 \left(1 - \frac{1}{\xi^2}\right)^2 + \left(\frac{R_1}{L_1 \omega_s}\right)^2\}]}{[1 - A\xi^2 \left(1 - \frac{1}{\xi^2}\right)]^2 + \left(\frac{AR_1}{L_1 \omega_s}\xi\right)^2} \approx \\ \frac{L_1 \omega_s \xi[\left(1 - \frac{1}{\xi^2}\right) - A[\xi^2 \left(1 - \frac{1}{\xi^2}\right)^2 + \left(\frac{R_1}{L_1 \omega_s}\right)^2\}]}{[1 - A\xi^2 \left(1 - \frac{1}{\xi^2}\right)]^2}, \end{split}$$
(5·B·2)

$$A = \frac{C_0}{C_1}, \qquad \xi = \frac{\omega}{\omega_s},$$

である. A R1/true <<p>ペ1として分母を簡略化した. 図補 B・1(a)及び(b)は、式(5・B・2)の分子及び分母

図補 B・1 式(5・B・2)の周波数依存性(計算値): (a) 分子, (b) 分母, (c) BVD モデルのリアクタンスの大きさ X_{BVD}, (d) BVD モデルの合成インピーダンス Z(*j*の)の位相

分母で 1 か所の周波数において縦軸の値が 0 となることが分かる. この結果, リアクタンス X_{BVD} は図補 B·1(c)に示すように周波数によって変化する. 式(5·B·2)の分子が 0 となる周波数 でリアクタンスの縦軸が 0 となる. 図補 B·1(c)に示すリアクタンスが 0 となる左側の周波数が f_r である (振幅が最大となる周波数). $\omega_r > \omega_s$ であるが, $\omega_r \approx \omega_s$ としてよい. 図補 B·1(c)に示 す右側のリアクタンスが 0 となる周波数付近では式(5·B·2)の分母も 0 となる. このため, リアクタンスが大きく変化する. 位相の周波数依存性は

$$\tan^{-1}Z(j\omega) = \frac{L_1\omega_g}{R_1}\xi[\left(1 - \frac{1}{\xi^2}\right) - A\{\xi^2 \left(1 - \frac{1}{\xi^2}\right)^2 + \left(\frac{R_1}{L_1\omega_g}\right)^2\}]$$
(5·B·3)

である. 位相の周波数依存性を図補 B・1(d)に示す. 位相は $\omega_s < \omega < \omega_p$ の間の角周波数で+180°増大する.

共振器の出力電流の周波数依存性は、BVD モデルのアドミッタンスを考えると理解しやすい. BVD モデルのアドミッタンスの大きさと位相は

$$|Y(j\omega)| = 1/|Z(j\omega)|, \qquad (5 \cdot B \cdot 4a)$$

$$tan^{-1}Y(j\omega) = -tan^{-1}Z(j\omega)$$
(5.B.4b)

である.ただし,

$$\frac{|Z(j\omega)| = \frac{\sqrt{R_1^2 + [x - \omega C_0(x^2 + R_1^2)]^2}}{(1 - \omega C_0 x)^2 + (\omega C_0 R_1)^2} \approx \frac{L_1 \omega_s \sqrt{(\frac{R_1}{L_1 \omega_s})^2 + \xi^2 [(1 - \frac{1}{\xi^2}) - A(\xi^2 (1 - \frac{1}{\xi^2})^2 + (\frac{R_1}{L_1 \omega_s})^2)]^2}}{[1 - A\xi^2 (1 - \frac{1}{\xi^2})]^2},$$
(5 · B · 4c)

である.

アドミッタンスの大きさと位相の周波数依存性を図補 **B**•2(a)及び(b)に示す. 共振器を発振器 に応用するとき,図の着色部の周波数領域(約180°の位相遅れと大きなゲインを持つ)が使 用される. 位相遅れが平坦な領域を使用するため,*f*,よりも少し大きな周波数が発振器の周波 数となる. 共振周波数*f*,のときのアドミッタンスは1/*R*₁となる. 大きなアドミッタンスを得る には*R*₁を小さくすることが重要である.

 $A(=C_0/C_1)$ を 10~100 まで変化させたときのアドミッタンスの大きさと位相の周波数依存 性を図補 B·3(a)及び(b)に示す. Aの値が増大するに従って $\omega_p - \omega_s$ の周波数間隔が狭くなる(式 (5・4)参照). 180°位相遅れの周波数帯域が狭くなっていくために、A=100 のときにはついに 位相遅れは 180°よりも小さくなる.また、Aの増大は共振周波数の外の周波数帯でアドミッ タンスの増大を招く.以上のことから、 C_0 が増大すると共振が観測しにくくなることが分かる.

図補 B・2 BVD モデルのアドミッタンスの周波数依存性;(a) 大きさ,(b) 位相

図補 B・3 A(=C₀/C₁)を 10~100 まで変化させたときのアドミッタンスの周波数依存性; (a) 大きさ, (b) 位相

■5 章演習問題

- [5.1] 梁の微小な領域の力のつり合いを考えて式(3・1)を導け.
- [5.2] 片持ち梁の高次振動モード(オーバトーンと呼ぶ)の共振角周波数は式(3・5)で与えられる.一方,1次振動モードの基本周波数の整数倍の角周波数を高調波と呼ぶ.1次から5次までの高次振動モードの共振角周波数と高調波の角周波数を直線に並べて配置した図を描け.
- [5.3] 式(3・2b)に示す基準振動モードを利用した関数展開とフーリエ級数を利用した関数展開の似ている点と異なる点を述べよ.
- [5.4] 両端単純支持の境界条件を持つ梁の基準振動モード関数 Y_n(x) を求めよ. それを用いて 式(3·5)を導け.
- [5.5] 図 4・3(a)のトランスを除くと同図(b)のように描けることを,図4・3(b)の2つの分岐を流 れる電流とその間の電圧が図4・3(a)と等しいことを確かめることにより,図4・3(a)のト ランスを除くと同図(b)のように描けることを示せ.
- [5.6] 共振器が図4・5の点線で示す向きと反対方向に変形するとき図4・6の矢印で示す向きに 電流が流れることを確かめよ.
- [5.7] $H_n(t) = A_n \cos(\omega_n t \phi_n), \quad Q_n(t) = F_n \cos \Omega_n t$ とし, 減衰力を式(3・6)に追加した式が式 (5・A・10)と等しくなることを確かめよ. なお, 式(3・6)の積分をすると $\cos \omega_n t$ と $\cos \Omega_m t$ に比例した 2 つの項が現れるが, 前項は減衰力の時間変化によって減衰するので除いて よい.

■参考文献

- H.C. Nathanson, W.E. Newell, R.A. Wickstrom, and J.R. Davis, Jr.: "The resonant gate transistor," IEEE Trans. Electron Devices, vol.ED-14, pp.117, 1967.
- W. Weaver Jr., S.P. Timoshenko, and D.H. Young : "Vibration Problems in Engineering, Fifth Ed." John Wiley & Sons, New York, 1990.
- T. Oka, T. Ishino, H. Tanigawa, and K. Suzuki : "A Silicon Beam MEMS Resonator with a Sliding Electrode," Japanese Journal of Applied Physics, vol.50, pp. 06GH02:1-8, 2011.
- M. Kiso, M. Okada, H. Fujiura, H. Miyauchi, K. Niki, H. Tanigawa, and K. Suzuki : "High Quality Factor 80 MHz Microelectromechanical Systems Resonator Utilizing Torsional-to-Transverse Vibration Conversion," Japanese Journal of Applied Physics, vol.51, pp.06FL04:1-7, 2012.
- N. Suzuki, H. Tanigawa, and K. Suzuki : "Higher-order Vibrational Mode Frequency Tuning Utilizing Fishboneshaped Microelectromechanical Systems Resonator," J. Micromech. Microeng., vol.23, 045018, 2013.
- E. Hwang and S. A. Bhave : "Transduction of High-Frequency Micromechanical Resonators Using Depletion Forces in p-n Diodes," IEEE Trans. On Electron Devices, vol.58, no.8, 2011.